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We consider the (traveling-wave-like) fronts which propagate with rational 
velocity p/q in a simple coupled map lattice Ibr which the local map has two 
stable fixed points. We prove the uniqueness of such orbits up to time iterations, 
space translations, and permutations o[" the associated codes. A condition for 
their existence is also given, but it has to be checked in each case. We expect 
this condition to serve as a selection mechanism. The technique employed, the 
so-called (generalized) transfer matrix method, allows us to give explicit expres- 
sions for these Solutions. These Iionts are actually the observed orbits in the 
numerical simulations, as is shown with two examples: the case of velocity I/2 
and that of velocity 1. 
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The appearance of fronts is known to be a relevant feature of real patterns 
in extended dynamical systems/~ Generally, the fronts are created by the 
spatial juxtaposition of different type of ideal (i.e., homogeneous) solutions 
for which the time evolution is regular, namely the domains. Such struc- 
tures are observed in reaction-diffusion chemical systems, ~2~ in alloy 
solidification, 13~ and, with a more complex shape, in crystal growth surface 
by molecular beam epitaxy/41 Though the dynamics of these coherent 
structures in space-time continuous models (i.e., the partial differential 
equations) is now well understood from a rigorous mathematical point of 
view, ~51 the study is not as complete in discrete models. 

On the other hand, coupled map lattices (CML) have been proposed 
as the simplest models of extended dynamical systems. These are space- 
time discrete dynamical systems with a continuous state representing the 
reaction-diffusion systems (see ref. 6 for a review). 
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The phenomenology of the front dynamics in a one-dimensional 
bistable CML is the following. ~7~ Generically (i.e., if the local map is not 
symmetric), there is a bifurcation from a regime of standing fronts to a 
propagating front behavior at a (strictly) positive critical value of the 
coupling parameter. The existence of this positive critical value is due to 
the discreteness of space and is well known as the pinning effect in con- 
densed matter physics. ~'~ 

In a previous work, ~ the existence and the stability of the steady 
fronts was proven in a simple bistable CML. The method was based mainly 
on the use of area-preserving linear spatial maps, the so-called transfer 
matrices. Generalizing this idea, we prove here the uniqueness up to time 
iterations, space translations, and permutations of the associated code of 
the (traveling wave) fronts, and we write down explicit expressions for 
these orbits. The paper is organized as follows. First, the model, the pat- 
terns under consideration, and their associated temporal codes are defined. 
We also study some simple properties of the traveling interfaces and show 
how the use of the Banach fixed-point theorem may give an insight into the 
corresponding fronts. The construction of these configurations and the con- 
dition for their existence are detailed in the second section. Then the 
stability analysis is sketched and we discuss the selection of the temporal 
code from numerical results. Finally, two examples, the cases of velocity 
1/2 and 1, are examined accurately in order to emphasize the corre- 
spondence with the numerical experiments. 

1. D E F I N I T I O N S  

Let M =  [0, l ]  ~, endowed with the usual supremum norm, be the 
phase space of the CML under consideration for which the dynamics is 
given by the one-parameter family of maps: 

F,:: M ~ M  
X t  b_..~ X t + l 

The model represents the simplest reaction-diffusion systems, i.e., the spa- 
tial interaction is the discrete Laplacian operator. Therefore the new state 
at time t + 1 is given by ~6~ 

.,+l . , e ' ) + f ( x ~ + l )  ) Vi6Z (1) .xi ~ ( F , : x ' ) ~ = ( 1 - e ) J ( x i ) + ~ ( f ( x ~ _  I 

Here the diffusion coefficient e ~ [0, 1 ] and the local map f is the simplest 
nonlinear bistable map of the interval which is not piecewise constant: 

~ax+(1 - a )  X~ if O ~ x < c  
f ( x ) = ( a x + ( 1 - a ) X 2  if c<~x~ l  
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Definition 1.1. 
the properties 

where the parameters a, X~, X2, and c obey the following inequalities: 

0 < a < l  and O ~ X ~ < c < X 2 ~ I  

which ensure the existence of the two stable fixed points X~ and X 2, the 
only attractors for f This map can be viewed as the simplest model of the 
autocatalytic reaction in chemical systems c-'~ or of the beam effect on the 
surface in crystal growthJ 4~ The patterns under consideration are now 
defined. 

An interface is an orbit {x'},~ r~ of the CML with 

and for any given t, 

~ x ~ < c  V i < j ,  
Vt, 3j, eZ:  (x~>~c Vi>~j, 

lira x ~ = X i ,  lim x~=X2 
i ~ - -  ~' .  i ~ + ,~- 

The cases where j , + ~ =  j ,  Vt are excluded here, since the attractor is 
then a steady interface, as was proven in ref. 8. Moreover, we know that a 
necessary and sufficient condition for the propagating interfaces (i.e., 
j ,+ t>~j, Vt) to appear in this model is 

X~ + X2 
c > - - - ~ - - -  and e > t , > 0  (2) 

Here the second inequality ensures the propagation for long times, while 
the first one gives the "direction" of propagation, to the "right" in this case. 

Note that the following study is also valid for the anti-interface orbits 
by simply applying the symmetry x i ~ x i_ ~ to any interface. 

A first step in this study is to give a bound on the increments of j, .  
Both from this local map and from the convex linear combination (1), we 
have the following result. 

Proposition 1.2. j,+~<~j,+IVt~F~. 
Among all the possible propagating structures, we are going to study 

the following ones: 

Definition 1.3. Let p and q (q~> 1, p ~ q )  be coprime numbers. 
A front is an interface such that 

x,i - F,.I x o = S t' x ~ 

where S stands for the (space) translation operator: (Sx) ;=  xj_ ~. 
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The sequence X = ( x  c~ x ~ ..... x ~'/- ~) of elements in M is called the 
generator of the front if 

x / =  x t/~, l = 1,..., q -  1 

Let Tp. q be the set of velocity p/q fronts. The main goal of this paper is to 
determine the set Tp/,~ and to compute explicitly the fronts. In order to con- 
sider disjoint sets of fronts, the orbits in Tp. q must not coincide with any 
of their translated orbits except for the (mp)th ones ( rneZ) .  Due to the 
fact that F~. and S commute, it is easy to extend the first equality in (1.3) 
to any point of the orbit: 

P r o p o s i t i o n  1.4. A front satisfies the traveling wave equation 

F~x'=SPx ' Vt (3) 

Hence this orbit is entirely characterized by its generator 

xnq+l=anPx(lt VneN,  l =  1,..., q -  1 

and Tp. q is completely determined by all the possible generators X. 
We now describe the front properties in terms of the properties of the 

associated sequences. To do this, we first introduce the following. 

D e f i n i t i o n  1.5. The (temporal) code associated with a traveling 
interface is the sequence ,4 defined by 

,4 ,=J, - -J , - I  V t > 0  

Notice that ,4 ~ { 0, 1 } ~ and that knowledge of the sequence j or J0 and the 
code ,4 is equivalent. We will use the term temporal code for both the 
sequence j and 3 unless it is ambiguous. One has the following result. 

Proposition 1.6. For  a front, the sequence {j,},~ ~ is such that 

Vt j , + q = j , +  p 

This statement follows directly from the relation (3). As a conse- 
quence, A is periodic with period q and is such that each of its sub- 
sequences of length q contains p l's. 

Furthermore, we will often use a terminology which allows us to 
restrict the present study to a representative of a class of fronts: 

Definition 1.7. Two temporal codes `4 and z~ are equivalent if 
there is a to e I~1 such that A ,=~1+ ,oVt>0 .  
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The traveling interfaces x '  and U are said to be equivalent if their 
associated codes are equivalent. One can compute all the equivalent orbits 
of a front from its generator. 

We now state precisely the correspondence between the temporal 
codes and the fronts. 

T h e o r e m  1.8. Given a sequence { j , } , ~ ,  then either the corre- 
sponding front does not exist or it is unique. 

Proof. Given p and q, we consider the dynamical system 

x ~+l =S-~'F~:x ~ Vr>~0 (4) 

Assume that the sequence { j , } , ~  with the property (1.6) is given. Then 
one knows explicitly the operator F',(. Moreover, the traveling interfaces for 
the model (1) can be thought of as being elements of the convex sets 

C(O') = {x '  e M: (x~--c)(O~--c) >~O} 

given the spatial sequence (spatial code) 0 ' =  {0~} ; ~ ,  where 

X l if i < j, 
0~= X2 if i>~j, (5) 

For any 0, C(O) is a closed set, since we can write 

c(o) = 0 g,;'([o, r]) 

where (go(x) ) i= ( x ~ - c ) ( O i - c )  is continuous and r is some real number. 
Now the set 

cg= {x~ C(0): (S-PF~:)~xE C(O) Vz>0} c M  

is either empt~r or not. In the first case, there is no fixed point of (4) in 
C(O). If cg is nonempty, since S- : 'F~:x-S-PF~:y  reduces to its linear part 
in this set and since this linear operator is a contraction, then there exists 
a unique front with such a temporal code. 1 

From this theorem and the previous comments on the equivalence of 
fronts, we can immediately deduce Tp. q. Let N(p, q) be the number of non- 
equivalent fronts, for which the generator is denoted v~o~ x~t~ x~,t-l~) ( - ' ~ l l  $ ~ i1 ~**' '1 i i  �9 
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Corollary 1.9. T~,.q is the set of the CML orbits for which the 
initial conditions are in 

N(p,  q) q - -  I 

U U U {sk,",/,} 
n = l  / , - ~  / = 0  

provided x(,/) exists. 

In practice it is not feasible to check whether or not cg is empty. 
Further, this technique gives no information on the (space-time) shape of 
the solution (except for the two codes 0 and A) nor on the possible restric- 
tions for the existence of such solutions. 

2. THE FRONTS 

In order to obtain a more complete knowledge of the orbits under 
consideration, the traveling wave equation must be solved for all the non- 
equivalent fronts. We detail here the construction of such solutions. 

Assume that the integers p and q >1 1 and the sequence j are given. 
From now on, we choose Jo = 0 for simplicity. Equation (3) is going to be 
solved for one configuration, say x" ' .  The decay rates in the front tails are 
first computed by the (generalized) transfer matrices. Then the construction 
is completed by considering the dynamics in the "center" of the structure. 
One has to carry out this procedure for all the nonequivalent orbits. 
However, we shall see that the decay rates are independent of the con- 
figuration under consideration. Only the "central" part of the dynamics 
changes from one configuration to a nonequivalent one. 

In order to deal with simpler dynamical equations we define y(k)~ ~ ,  
the deviation vectors from the (local map) fixed points: 

r v(k)_ X v(k)_)-  i I if i>~jk 
. i -~x( ik)  X2 if i>~jk k = O  ..... q - 1  

The corresponding dynamics for these vectors is deduced from the CML 
dynamics and the sequence j. 

To solve the traveling wave equation, y(q) has to be expressed in terms 
of y")( We obtain the relation 

q 

y~ - a  Y. m~g.v++l 
I= --q 
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where 

,-,=o p l + 2p 

Here E stands for the floor function and (,',',) for the binomial coefficients�9 
The constants C~'" '~ vanish for i < - q  and for i t> q and they differ "non- 
commutatively" for nonequivalent configurations�9 Moreover, the transla- 
tion operator ~ clearly acts on the deviations in the same way as S acts on 
the original variables�9 

The (lower) linear part of (3) is solved by computing the sequences of 
vectors 

Yi=(Yi, Y i + I  . . . . .  Y i + 2 q  1) T 

of 1/~ 2'~, which are related by the linear map 

Yi_q=Ap .qY i_q+l  Vi< --q 

where 

m p ,  q : 

l'~ q I 

I17 q 

l 

0 

mq_ 2 . . . . . . . . .  (aUmp- 1 ) mo m,t - i 11 
ITI q [ l  ql'H q I~1 q I~ I q 

0 . . . . . . . . . . . .  0 0 

1 

�9 ~ 

�9 . . �9 ~ . 

�9 �9 , " , �9 " �9 

�9 . �9 �9 . 

0 . . . . . . . . . . . . .  0 1 0 

is called the (generali-ed) transfer matrix. (The superscripts are dropped 
unless ambiguity results, and T denotes the transpose.) Naturally, the pro- 
cedure is identical for i>~q and the corresponding transfer matrix is 
denoted ~,,. ~?. Some relevant properties of these matrices are claimed in the 
following proposition�9 Let R be the 2q x 2q matrix 

o . 

. . . .  

822 86 I-2-23 
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with the property that R - ~ = R .  For Ap.q we have the following result 
(similar properties hold for Hr.,). 

Proposition 2.1. (i) det Ap..= 1. 
(ii) The characteristic polynomial PA,,., factorizes as 

Pap , ( 2 ) = \ a e /  [ aq g -- (6) 

(iii) Let 2i.p. q be the ith eigenvalue of At,.q. Then Vi.p.q, the corre- 
sponding eigenvector, is written 

Vi.p.q=v~.p.q((2i.r.,i)2,1 I ..... 2;.p.,,, 1) T 

where ui. p. q is some real number. As a consequence, the eigenvalues are 
nondegenerate. 

(iv) Ap.q= R2~ , IR  , which implies Ap.,/(RVi.p.q)=(1/2~.p,q)(RV~,p,,t ). 

Proof. Properties (i) and (iii) are due to the peculiar entries of these 
generalized transfer matrices. The second property is due partly to the 
peculiar form of An. q and also partly to the expressions for m/. Finally, to 
prove the last statement, one has to identify both the Y; iterations (for 
i <  - q )  and those corresponding to the indexes i>~q. | 

For x I~ to be a front, we claim that both the initial vectors for these 
linear dynamics must belong to the contracting eigenspace of the transfer 
matrices. Let n (resp. ~) be the number of Ap.q (resp. Ap.q) contracting 
eigenvalues; then from (ii) and (iv) one obtains n + g  = 2q. 

Though the study of the real spectra of these transfer matrices can be 
achieved analytically, the complex eigenvalues have been numerically com- 
puted for different values of p and q. We obtain n = q + p and ~ = q - p .  

In all cases, given these constraints, the general expression for the 
deviations corresponding to a front is 

v ' -  ~ o ~ - , + l l  V i ~ < - I  i - -  0{I "~/,  p .  q 

/ = l  

o ~o if 2i =,~j. p. q (the where 0r ~ is a real constant if 2,.. ~. ,t is real and 0r i = j . p. q 
bar denotes the complex conjugate). A similar expression is obtained for 
the sites i/> 0. 

o and -o The 2q constants cr ~r are computed by solving the 2q remaining 
lines (i.e., - q < ~ i < q )  of the traveling wave equation. These remaining 
equations can be transformed into the actions of spatial affine maps for 
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each of which the linear part is still the transfer matrix. In this way, we 
prove that, since Ap.,~ is nonsingular, the constants are always uniquely 
determined. 

For  this solution y(O) to correspond to the deviations of a CML orbit, 
one has to check that the front thus constructed really is in the correct con- 
vex set C(O') at each time step. Then the following must hold: 

.x'~l ~> c and xJ~+ I) < c  iff j k+t=jk+l  (7) 

(provided that vlkl / _lk ~ ~'~ik-'�9 if i<jk--1 and -~"~k~>x~k~i if i>jk). It is not 
feasible to check these conditions in the general case, but we shall see with 
the examples that they greatly reduce the range of parameters for which 
this orbit exists. When it exists, the unique front with velocity p/q and given 
code j is given by (recall that J0 = 0) 

f ~.,-~-~+.,.-I+(k-.,.)p/q Vi<~s- 1 Xi + ~ t.~l.p.q 

~s'~i-s-lk-s)p/q Vi>~s X._+ y~ ~.....,, 
/ = 1  

Vk=q ....... q.,.+ l, s = 0  ..... p - - I  (8) 

where Vk = q ........ q.,. + ~, Jk = Jq~ =- S. The q.,. are such that j,,,, + ~ = j,~, + 1. The 
~+~ are deduced from the ~7 using the deviation dynamics. 

We now briefly sketch the stability analysis of the fronts. In particular, 
we investigate the stability of  the fixed points of the dynamical system (4). 
Let j'.,.,~,, (resp. j.,. ,) be the temporal code of a front (resp. the initial con- 
figuration x). Assume that 

S t o < ~ :  Vt j.,.,=jg,,,.,~,., 

Then, by generalizing Theorem 1.8, we have that x converges toward an 
iteration of x ~k>. This implies the asymptotic stability of the front (though 
we have not shown that the initial conditions treated here form a 
neighborhood of x ~kl, for some topology in [0, 1 ] ~). From the numerical 
point of view, the simulation displays the convergence toward these struc- 
tures. The orhy property required for the initial conditions seems to be that 

~xi<c if i < j  
3j, j'(j'>~j): ~x~>~c if i>>.j' 

At this stage, one may wonder if all the orbits with nonequivalent 
codes really exist in the physical situation (i.e., t ~ [ 0 ,  1]). From the 
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numerical simulations, it turns out that only one front configuration solution 
of the traveling wave equation is selected by the system: the one with the most  
uniform code. One can see that the corresponding sequencej  is given by 

WeIR 

where 6 depends on the initial condition shape. We expect that a convexity 
argument should be invoked to prove this. We finally note that this 
problem of code selection does not occur for the velocities 1/q and 
(q - 1 )/q, since there is only one nonequivalent configuration in these cases. 

3. E X A M P L E S  

We close the study of propagating interfaces by solving completely the 
traveling wave equation for two examples: the case of velocity 1/2 and that 
of velocity 1. The first case is interesting as the simplest example of a non- 
trivial velocity for which one can write explicitly condition (7) and com- 
pare it to the numerical simulation. Velocity 1 is a special case since it is 
the maximum propagating velocity. 

For p = 1 and q = 2, the set of fronts is 

= U { 

We will consider the solution x ~~ for which j~ =Jo  = 0 and consequently 
j = = l .  In this situation, we have n = 3  with the peculiarity that 
22. ~. 2 = J-~, ~. 2 and r7 = 1. From now on, the extra subscripts 1, 2 and super- 
scripts (0) are dropped. The affine system of four equations obtained for 
the deviations is 

a,~ 2 
m 2 Y - 4 + m l  Y-3 + m o y - 2  + m l  Y-i  +m2yo  + - 7 - ~  =Y-3  

q .  

m2y _~+mty 2+moy_ l+mtyo+m2y~+~ ] + a  l -  6- -y  2 

Di-~ V_~ + n i l  y ] - ~ - 1 1 1 0 V o - l - l n l Y l - l - l n 2 y  2 

+{,-2E, 
11"12 Y - I -I- 11"1 1 Y O q- 1170 Y I -t- I I11 Y 2  "4- 117 2 Y 3  - -  - -  "~ ~ = .P o 
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where 6 = X 2 - X , ,  m , )=a2[ ( l - e )2+e2 /2] ,  
(ae/2) 2. The resulting constants  a / a n d  8 / a r e  

m ] = a ' - ( 1 - e )  e, and m2~- 

r 2~[ - - R ( 1 -  ~.,)(l--23)(1 -- ~.,)-- $2,23 + T2, ] 
0C I - -  

(21 - -2] ) (2 ,  --23) (1 -- 2 ,2 , )  

I 0(2 ~--" O~ I 

2~[ - R ( I  - ) , , ) (  1 - J.,)(1 - 7 , , ) - $ 2 ,  J., + T2 , ]  

] ~ (21 _ ).3)(,~j _ 23)(1 _ 23~1 ) 

27[R(] - 21 ) (1 - - 2 , ) ( ] - - 23 ) -82 ,  2, 23+  T] 
o7. I - -  

~. (I - 3,, 2,)( I - 2,,~, )(I - 2.~2,) 

where R = (f/a, S = 2( l - a) ~/a2e, and T =  ( l/a + e/2)( 1 - a) 6/m2. Here the 
lattice values that  enter in the existence condit ion are 

. ( I ) ~  ~ ~ - - I  2 .~-~ c) - X2 +cc,2j  

( x',~' = x'?', = x ,  + o~, + ~, +~., 

By comput ing  numerically the contract ing eigenvalues, one can compare  
the range of  e values for which this front exists (Fig. 1) with the one 
obtained from direct numerical  simulations of  the C M L  (Fig. 2). F rom 
these pictures it is clear that the two values of  e bounding this range are 

1 

o.8 " ' . a | : . . . :  . . . .  
e 4  ~ ~  ~ 

�9 e s i ~ 6 ~ t  s o : . e .  I 

. . . . .  . . . : . . .  
0.6 " ' ' ' : : : : z m .  

0 . 4  

0.2  

i 
o o 0.2 0.4 0.6 o.s 

" "  (upper  dots)  versus ~: for u = 0 . 4 ,  X] = 1/6, X_, = 5/6 and Fig. I. x'_" I (lower dots) and .% 
c=0 .7 .  The horizontal lines show the values at X~. c and X_, and the vertical lines show the 
range Ibr the velocity I/2 front's existence. 
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1 

0.9 

0.8 

0.7 

0.6 

O.S 

0.4 

0.3 

0.2 

0.1 

0 
0.3 0.35 0.4 0.45 0.5 0.55 0.6 

Fig. 2. Plot of the front's velocities versus e measured from direct numerical s imulations of 
the C M L  ( a = 0 . 4 ,  X I = I/6, X_,=5/6 and c=0.71.  The critical value t:,. at which the front 
begins to propagate  is 0.3129.... The value t: . ~ at which the front with velocity I appears  is 
0.5882... (see textl. 

Fig. 3. 

1 

0.8 

0.6 

0.4 

0.2 Q �9 

�9 �9 �9 �9 �9 Jl 

. . . . . . . . . . . . . . . .  , . . , . . . .  , . . . .  , . . . .  , 

2 4 6 8 i0 12 14 

The velocity I 's front configuration x""  for c = l  ( a = 0 . 4 ,  X I = I/6, Xz=5/6 and 
c =  0.7). 
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in good agreement with the "experimental" data. The devil's staircase struc- 
ture of the velocity might be related to the unimodular transformations. ~~ 

The velocity I situation is slightly different, since the transfer matrices 
are not of determinant unity. The result of the spectral study of these two 
matrices is quite surprising. Indeed, for 0 < a < 1 and 0 < e ~< 1, A L J has 
two contracting eigenvalues 2~ and 22, but -4L ~ has no contracting eigen- 
value. Then the front with velocity 1 is (assume again that j o = 0 )  

.k fXl  "~ ~ 12 / 1i -/" + I ) -'1- ~2'~'2 Ii-/" + I ) if i < k  
.x,.= ] X, if i>~k Vk (9) 

where the constants ~ and ~2 are the solutions of the following system of 
equations: 

1 - e/2 
~ +cc2= 1-----a--~ (X2-- X~) 

e + a( 1 -- 3e/2) 
(x_,-x,) 

Conditions (7) for the existence of this solution here become 

X2>c and X~ +cx~ +e2  < c  

The first condition is always satisfied, so there is no upper bound for the 
existence of the velocity 1 solution. Moreover, one can check that the 
second condition is fulfilled when 

2 ( X 2 -  c) 

X2 - X t  - a ( c -  X~)  

For the values of the parameters given in Fig. I, one obtains e_~ -~ 0.59 
(see Fig. 2). A representation of this solution for the limiting case e = 1 is 
plotted in Fig. 3. Note the somewhat unexpected result obtained by choos- 
ing e =  1 in (9): 

x~i_k=xw k Vi<~k-1 

4. C O N C L U S I O N  

In this paper, we have presented a method for computing explicitly the 
fronts which propagate with a rational velocity in a (simple) bistable CML. 
Among these orbits, those that have the most uniform temporal code are 
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the ones that appear in numerical simulations of the physical situation. 
However, to establish the equality of the numerical results with our analyti- 
cal solutions, the condition for the fronts' existence must be checked 
separately for each code and the stability analysis must be done more care- 
fully. We believe that the configurations with nonuniform codes do not 
appear. Moreover, we have not proved the velocity's increase with the 
coupling strength, which can be presumed from Fig. 2, nor that, given e, 
there exists a unique possible generator for the front orbits. 

From the present study and by generalizing the results of ref. 8, one 
can see that the phenomenon of front propagation in a bistable CML 
results from a succession of generalized saddle-node bifurcations [-of the 
frontlike fixed points of the mappings (4)],  though it is not clear that for 
each stable front, there corresponds an unstable one. At each bifurcation 
point, one front disappears while a new one appears (with a new velocity). 
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